OBJECT-ORIENTED PROGRAMMING FOR SCIENTIFIC
Copgs. I: THOUGHTS AND CONCEPTS

By T. J. Ross,' Member, ASCE, L. R. Wagner,? and G. F. Luger’

AssTracT: This paper is an introduction to object-oriented programming (OOP)
as it relates to the development of large-scale scientific codes. It is the first of two
papers describing OOP issues for scientific-code development. Since object-ori-
ented methods provide for the encapsulation of data and methods, scientific codes
can be written in terms of the underlying physics of the problem with less regard
for computer-science details. We discuss some of the features of large-scale scientific
codes that are amenable to object-oriented design. The concept of efficient port-
ability is elucidated, explaining why object-oriented user codes need not be altered
when moving code to radically different computer architectures. In fact, we envision
codes running without major changes on serial machines. such as a Sun or Vax:
vector machines, such as a Cray; and on massively parallel processor systems, such
as the Connection Machine. Comparisons between FORTRAN and the object-
oriented programming language of C++ are illustrated with simple examples of
matrix operations.

INTRODUCTION

Computers remain an incomplete tool for engineers and scientists. They
are a useful tool in that they can perform computational tasks of a magnitude
far beyond the capability of any human. They are incomplete in that, for
full utilization of the underlying machine, it has been necessary to view
them as “white (transparent) boxes”—a user must specify not only what to
do, but Aow to do it. For example, to fully utilize vector machines such as
the Cray, an engineer must be sure that FORTRAN routines allow the
underlying system to vectorize, which in turn requires some knowledge of
what vectorization is and how it is implemented. This is somewhat akin to
needing to know a little metallurgy before using a hammer.

In an ideal world, all that would be necessary to solve a system on a
computer would be to describe the physical situation as well as the appro-
priate boundary conditions. Details such as choosing the algorithms and
data structures to use the underlying hardware would be handled by the
programming environment (i.e., computer science details would be handled
by computer scientists) in much the same way that the phone system figures
out an efficient routing of a call without any elaborate user specification.

The capabilities of object-oriented programming (OOP) in recent years
have now made this programming paradigm a very promising tool for the
development and implementation of large-scale scientific codes, especially
those requiring implementation on the newest computer architectures. OOP
techniques are now applied to a wide variety of applications (Booch 1990).
1t has been recently used in graphics (Vlissides and Linton 1988), in object-
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oriented data bases (Howard 1991). in software user interfaces (Gorlen
1987). and most recently in scientific code development (Wagner et al. 1991;
Angus and Thompkins 1989; Forslund et al. 1990).

OOP has tremendous potential in the scientific software business. This
approach to programming computational codes promises to produce more
and more easily maintained software for less effort and expense. Conven-
tional software labors under the weight of seemingly endless lines of code,
while OOP allows programmers to build an application program by using
existing or easy-to-build modules called “objects.” The modules become
active when they are attached to the rest of the computational code. Better
yet, they become active without disrupting any other parts of the application.
Moreover. the modules can be removed entirely without causing the ap-
plication to breakdown into electronic incoherency. For instance, library
“objects™ can represent traditional numeric packages. This method takes
the place of many individual custom lines of code. saves time, and makes
it easier to spot and reduce errors. (Most popular large-scale scientific codes
have undergone so many revisions. with so many groups. that they resemble
Rube Goldberg schematics.) Therefore, it seems natural to apply OOP to
the design of modules for scientific computations.

This is the first of two papers [see also Ross et al. (1992)] describing OOP
issues for scientific code development. This paper discusses how a scientific
problem is decomposed using object-oriented design for computer modeling.
It also provides comparisons between the most popular scientific program-
ming language of FORTRAN and the object-oriented programming lan-
guage of C++. Finally, some simple examples of matrix operations using
C++ are provided for the purpose of illustrating some of the OOP issues
discussed herein. The second paper (Ross et al. 1992) offers some specific
numerical code applications using C++ and discusses optimization issues
for OOP. )

OJecT-ORIENTED DESIGN

In object-oriented programming, any physical or logical entity in the
model is an “object”. The definition of a type of object is called a “class.”
and each particular object of that type 1s known as an “‘instance” of the
class. The definition of operations on or between objects are called “meth-
ods,” and the invocation of the methods is referred to as “‘passing a ‘mes-
sage.”” If a method is defined as a symbol (e.g., +. *, =), then the method
is often referred to as an “*operator.” For example. in Fig. 1 we have a class
called matrix, which includes the methods on matrices such as the definitions
of the operators = (assignment) and * (multiplication). Entities A, B, and
C are declared to be instances of the class matrix; matrix is the type of
object, and A, B, and C are specific instances of this type. In order to
multiply A and B and store the result in C (C = A*B), messages involving
the operators * and = are passed from A and B to C.

The distinction between a method and a message can be illustrated by
referring to the analogous terms in the procedural language FORTRAN.
In FORTRAN., a method is the definition of a function or subroutine (pro-
cedure), and a message is like the CALL statement (i.e., the invocation of
the function or subroutine). In this paper the terms ‘“‘function,” “‘proce-
dure.,” and “‘method” are used interchangeably. Because the word “method”
is so pervasive in this paper, it is italicized when used in the specific context
of a function attached to an QOP class, e.g., + method on class matrix is
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Jf partial C++ class definition
class matrix ~ {

marix operator = (matrix&); // method =
matrix operator * (matrix&,matrix&) // method *
|5
\\ rmoa code
matrtix A,B,C; // A, B, and C are declared instances of the class matrix
m.u.»*ww // messages = and *
class
Matrix
>
instance ! instance
A*B
A B
instance
C

FIG. 1. Example of Matrix Objects

italicized. When used as an approach, such as the finite element method,
it is not italicized.

Operator (or method) “overloading™ allows the programmer to think in
the same terms for application of a function to two different objects. An
example is printing an integer or printing a string, where we have two
different objects but the same desired printing operation. C++ allows any
function or operator to be overloaded and the routine called will depend
on the type of the operands, that is, the object to which the message is sent.
This concept is used in a limited manner in conventional programming
languages. For example, the operator * is overloaded in FORTRAN. The
compiler knows that integer*integer returns an integer, whereas real*real
returns a real. Is there any reason why multiplication of integer matrices
should be referred to differently from the multiplication of real matrices?

OOP languages such as C++ allow for objects to be placed into a con-
ceptual hierarchy. Thus, a class has ancestor classes preceding it in the
hierarchy, and the class is said to “inherit” the properties of its parents,
which inherit the properties of its parents, etc. Instances of a class also
inherit methods from the class. Class hierarchies (subclasses) allow the pro-
grammer to specify that certain methods are inherited (while others may
not be) from the superclass to the subclass (Luger and Stubblefield 1989).
For example, consider the following C++ definitions of 1-D and 2-D nodes
in a numerical code implementing a finite difference or finite element anal-
ysis, as shown in Fig. 2.

Nodel contains a location in one dimension, internally referred to as x.
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Note: double means double precision floating point .
void means there is no return type (i.e., it's a procedure - not a function)
cout is the standard output stream (usually a file or the display)
<< is a message between an object on the right and an output stream: cn the
left meaning, essentially, "print me”

class Nodel
{
protected: double X
public: double gex(Q {returnx; }

void print_location() { cout << x; }

}

class Node2 : Nodel
(
protected: double N
public: double gety() {remmys;}
void print_location() { cout << x<<y;}
}

ZOOmJm Publi

X getx( )
print_location( )

Protecled  Public

[x getx() ]

y gety()

print_location( )

FIG. 2. Inheritance in Object Node

It has a routine getx to retrieve this value and a routine print_location to
display its position. Node2 inherits all that Nodel contains (small rectangular
box in Fig. 2), and it adds a location in the second dimension, y, as well as
a routine for retrieving it, gety. Also. Node2 redefines the meaning of
print.location. This allows user code to print the location of a node without
worrying about what kind of node itis. In Ross et al. (1992), we demonstrate
that user code based on an object structure of this type for handling a one-
dimensional finite difference problem can be easily modified to handle a
similar problem in two dimensions. .
OOP also allows for data hiding, also referred to as “encapsulation.” In
Fig. 2. “protected™ things are known only to class and its descendent classes
in the hierarchy, whereas “‘public” things are known to all users of the class.
It is also possible to declare part of a class to be “private” —known only
to the class. The idea is to make the methods that manipulate an object
public, while making the variables and methods that are used to implement
an object either protected or private. This is exactly how an abstract data
type is defined. The implementation of the object is said to be encapsulated
so that only the object itself knows how methods are performed; and yet
the functionality of the merhods is offered to the outside. The focus is on
the data being manipulated, not on the procedures used for the manipu-
lation. Further advantages of data encapsulation will be illustrated in an

example.
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Object-oriented programming has its roots in software engineering, em-
phasizing modular development for increased software extensibility and
reusability as well as better control of complexity and cost of software
maintenance. Extensible programs are developed incrementally. This type
of problem solving is achieved through an overall top-down design in con-
junction with a bottom-up approach to the implementation details. The
object-oriented approach allows the programmer to add functionality to a
program by using the existing structure to add new instances and class
definitions so that whole code modules do not have to be modified or
completely rewritten. Reusability means that there is a distinct separation
between the functionality and actual implementation of a program or sub-
program. In this way the programmer can use an existing set of class def-
mnitions without knowing how the methods are implemented. Maintainability
and reliability are enhanced because changes that are needed in an imple-
mentation will be localized to a specific object module. Thus object-oriented
programming allows for rapid prototyping of an application.

HisToricaL DEVELOPMENT OF OOP ENVIRONMENTS

Smalltalk was the first design of an OOP language, developed in the early
1970’s at Xerox Palo Alto Research Center under the direction of Alan
Kay. The original Smalltalk interpreters were built as extensions of the LISP
environments and were used primarily as simulation-based applications. The
roots of the Xerox work may be found in the SIMULA and MODULA
families of languages as well as the LOGO language produced by S. Papert
at MIT (Papert 1980) at about the same time. The philosophy behind Smali-
talk was that of “letting the programmer solve a complex problem by sim-
ulating the interactions of the components of the problem.” This approach
is sometimes referred to as a “homomorphic representation” where the
objects of the problem situation are mapped down into computational ob-
jects. Of course the procedures or methods of these computational objects
reflect the functions the entities have in the actual problem (Goldberg 1984).

Various other researchers added to the OOP approach. Smalitalk created
objects as a result of both specifications and procedural abstractions across
the entities of the problem domain. Thus the function of all individual object
instances in a problem domain would be represented by the definitions and
methods contained in a class. Each instance would then “inherit” the meth-
ods belonging to that class. Object-oriented languages extensions to LISP,
such as CLOS (Common LISP Object System), allow multiple inheritance,
the ability to inherit from any number of parent classes (Keene 1988). We
think this addition has proven to be an important supplement to the original
Smalitalk design.

While the original OOP languages were all LISP-based it was only natural
that the same methodology should be created in the C language. This oc-
curred in the mid-1980s with the appearance of C++ (Ellis and Stroustrup
1990) and Objective C (Cox 1986). The C++ approach is now much more
generally used.

Recent DeveLoPMENTS Using OOP For NumericaL Cobes

Recent research indicates significant promise for OOP languages and for
C++ in particular. C++, unlike most OOP languages, was created with
runtime efficiency and low storage overhead as explicit design goals. Thus,
C++ is often employed in areas where these attributes are critical.
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Angus and Thompkins (1989), have compared C++ with C for com-
putational fluid dynamics codes. They found that the C++ code ran 1.5—
3 times slower depending on the underlying machine. Their C codes were
specially written for each architecture while their C++ user code was tested
unmodified. Table 1 illustrates the speed of C++ on various configurations
indicated by the number of nodes in use on a Hypercube. The goal of this
seminal work was to demonstrate that C++ user code could be ported from
one architecture to another without alteration, yet remain efficient on both.
We expand upon this idea briefly later in this paper, as well as in Ross et
al. (1992). -

More recent works in the application of OOP techniques to scientific
applications reveals the true potential of this environment. A recent dis-
sertation (Segal 1990) presented work in the area of object-oriented ap-
proaches to computational geometry. This work specified a code written in
C with an OO preprocessor. Since the code was not written in C++, it did
not provide direct access to classes, it could not specify a distinction between
public and private data access, and it was not efficient from an OO point
of view. The work did make some cursory suggestions for finite element
codes, however. For example, an “intangible” function was used to specify
matrix spaces at a high level in the abstraction for situations where the basis
vectors of the matrix were not yet known. Then a “tangible” function was
used at lower levels of the hierarchical structure when the basis vectors
became known. This has the effect in finite element theory of mapping
element matrices in local coordinates into a global coordinate system where
all elements are combined.

MacDonald (1988, 1989) and MacDonald et al. (1990) conduct research
in object-oriented structures for numerical operations on algebraic equa-
tions. This work in CLOS addresses issues of conceptual clarity of object
structures in this domain. ) )

A recent paper (Forslund et al. 1990) describing a plasma-particle sim-
ulation code was written in C++ at the Los Almos National Laboratory.
The paper reiterates the fact that although C++ “has not yet become of
widespread use in scientific applications,” it should provide “a better par-
adigm for distributed memory parallel codes.” The particle simulation code
was originally written in FORTRAN for serial computation, but is now
being rewritten for employment on top of a distributed programming tool
kit on a Sun workstation. In this connection the paper describes some of
the difficulties encountered when using C++ for parallel scientific com-

putation. ) )

One thought currently being given to the implementation of very large
scientific codes is to eventually harness several supercomputers together

TABLE 1. C++ on Hypercube iPSC/2 in Milliseconds per Grid Cell (Angus and
Thompkins 1989)

Number of Nodes in Grid
Grid size 1 2 4 8 16 32
(1) (2) (3) (4) (5) (6) (7)
10.206 8.92 5.36 2.96 1.69 1.02 0.79
76.055 — — 2.55 1.31 0.69 0.42
250.588 — — — — .66 0.37
586.845 — — — — — 0.33

over high speed channels. Unfortunately, although the channels will be very
high speed they will be high-latency relative to the clock cycle of the ma-
chines. This is similar to a network of RISC-based machines running on an
Ethernet. As with conventional programming techniques, library modifi-
cations may be necessary to fully use this new architecture; however, user
code written under the efficient portability paradigm need not be altered.
It can immediately be run on the new system with larger problem sets being
the only change.

LARGE-ScaLE ScienTiFic AND CoMPUTATIONAL CODES

Most large-scale scientific calculations are associated with the solution of
partial differential equations (PDEs). These PDEs model realistic physical
problems that are characterized by space and time, where the solution to a
given physical system is desired in both space and time. The solution of
PDE:s for very simple systems can be accommodated in a closed-form fash-
ion, but the number of such cases is very limited as is the value of their
results. Most useful physical applications are so complex as to require ex-
tensive numerical computations.

The PDE:s are described by classical mathematical operations on scalar
fields and vector fields (e.g., curl, divergence, and gradient) describing the
physical domain of the problem. Because of the complexity of the PDEs,
discretization methods are commonly used to provide a solution.

The two most popular discretization methods used to solve complex PDE
problems are known as the finite difference method and the finite element
method. These two methods are very similar in that they allow the analyst
the ability to model problems involving space and time coordinates, various
materials, and various boundary conditions. For both the finite difference
method and the finite element method two different coordinate systems can
be used to describe the physical and geometric domain of the problem, a
Lagrangian system and an Eulerian system. In addition, the PDEs can be
solved with one of two schemes, the explicit method or the implicit method.
All these methods and systems are illustrated with simple OOP implemen-
tations in Ross et al. (1992).

An OOP environment for scientific calculations must therefore address
the various modeling methods (finite difference and finite element), coor-
dinate systems (Eulerian and Lagrangian), and solution methods (explicit
and impilicit). Scientific codes lend themselves to an OOP environment
because of their modularity and similarity. Most of the features of the various
approaches are the same, and differ only in small ways as previously dis-
cussed. For example, a general code would contain coordinate system mod-
ules, modeling modules, and solution approach modules. More importantly,
the various aspects of scientific codes lend themselves very nicely to an
object-based abstraction. For example, nodes share many of the same char-
acteristics in finite difference and finite element formulations; elements in
the finite element method share some properties with cells in the finite
difference method; and material models for the two methods are similar.

In an OOP environment, nodes and elements and material models can
all be modeled as objects. Numerous objects will “inherit” properties from
other objects and methods will operate on objects. For example, in a finite
element code, the object element_velocity will inherit information from the
object node.velocity, and the “implicit_solution OOP method” will operate
on the object “‘node_velocity.” Such convenient and similar descriptions
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using object-based abstractions will allow the analyst tremendous power in
combining various features of different solution approaches and in quickly
building dedicated and reusable scientific software. )

Fig. 3 shows a hierarchy that an engineer or scientist might use to de-
compose a physical problem so that it can be analyzed by a computer in an
OOP environment. At the continuum level, the basic mathematics governing
the properties of the system to be studied is specified. At the discretization
level, the problem is decomposed into subpieces and interactions between
these subpieces; this is the level where such things as boundary conditions
and stability issues are implemented. At the data level, primitive structures
(e.g., matrices) and operations are mapped to the computer architecture so
as to best utilize the underlying machine. As the engineer or scientist has
to delve further down this hierarchy in order to solve the problem, pro-
ductivity in code development and modification decreases. ]

It would be best for code productivity if the transitions between contin-
uum, discretization, and data layout were well defined. In other words, a
user should be able to operate in the continuum and/or discretization worlds

Scalar-Field Vector-Field
* Arithmetic * Curl
* Divergence
* Gradient

Continuum

Discretization

Discretization-Methods
* Finite Element
* Finite Difference

\/

Solvers Coordinate-Schemes
* Explicit * Lagrangian
* lmplicit * Eulerian

Data

Matrix Operations
and Recursive
Relations
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without worrying about the actual data layout, which is, after all, simply a
machine-dependency issue. Higher-level languages like FORTRAN were
developed in part to hide the machine dependencies of fundamental data
types like integers and reals, which was more difficult at the assembly lan-
guage level. Now, these same problems reappear in OOP in dealing with
aggregate data types such as matrices.

The essential problem with FORTRAN is that it provides no method for
encapsulating the structure of the data. One of the greatest hindrances to
the full exploitation of the concurrency offered by distributed memory ma-
chines is that, with these traditional languages, the programmer must ex-
plicitly specify the layout of the data storage. By doing this in an OOP
language such as C++, the program design enhances the portability of
application codes and, at the same time, improves the development and
reusability of the software. Ross et al. (1992) describe a system for devel-
oping finite difference and finite element codes that never forces the user
below the discretization level. At the lower levels of Fig. 3, libraries im-
plement the software interface between the high-level objects that the user
employs and a specific architecture. It is at this library level that the machine
dependent details of data storage, parallelization, and synchronization are
implemented.

Ideally, objects and the operations on them should be defined in the most
general mathematical form, at which point the libraries can then determine
what specific operation is performed, as well as the specific discretization
methodology that is optimal. It would be best to develop continuum objects
(e.g., Vector-Field) with continuum operators (e.g., curl) on them that
handle more and more of the discretization steps. Eventually, one would
like to do everything at the continuum level, where it is most accessible to
and understandable by the scientist or engineer. The examples given here
and in Ross et al. (1992) are, however, largely trapped at the discretization
level. Extending them to the continuum level in a way that fully utilizes an
underlying architecture is a quite nontrivial computer-science problem; how-
ever, work is being done along these lines (Wagner et al. 1991). Since it is
difficult to automate the selection of a discretization scheme, a user’s choices
could occur at this level, where retention of as much of the elegance of the
mathematics as possible could be accommodated.

Note that it is possible to extend an object system “‘upward” to handle
a higher level abstraction, such as moving from discretization to continuum
levels in an object library for scientific code. This will require substantial
modification of the code unless this extension was kept in mind throughout
the development of the original system. Thus, some of the same software
engineering design problems remain as with conventional coding techniques.
While OOP is not a panacea, the focus on concepts inherent in the paradigm
eases the computer-science problem somewhat, and OOP retains its big
advantage of divorcing the computer science (how the tool works) from the
engineering problem (what the tool is being employed to do).

C++ Runmive EFFICIENCY

The goal of the work reported by Angus and Thompkins (1989) was to
demonstrate that C++ user code can be ported from one architecture to
another without alteration, yet remain efficient on both. Table 2 illustrates
the efficiency of C++ when compared to C on the same architecture. The
interesting thing about this work is that, while the C code was customized
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TABLE 2. Comparison of Sequential C to C++ in Seconds per lteration on Sun-
3 and Hypercube iPSC/2 (Angus and Thompkins 1989)

Machine C C++

1) 2) (3)
Sun-3 72.4 191.8
iPSC/2 (single node) 23.1 78.9

for each architecture, they made no attempt in developing their libraries to
take advantage of the underlying machine. For example. a matrix was simply
defined as an ordered sequence of vectors. and the work was passed on the
vector class. This is the obvious way of defining the library, but it is the
first thing you would change if speed was critical. Note that a change in the
library definition of matrix and associated operators requires no change in
user code, which is usually not the case in standard FORTRAN.

C++ is not a pure OOP language. sacrificing some of the elegance of
the paradigm in order to gain run-time and memory-usage efficiency. Some
of the performance advantages of C++ over pure OOP languages are
described in a paper by Ross et al. (1992).

PORTABILITY AND EFFICIENT PORTABILITY

User code is considered to be portable if it can be moved from one
machine to another without change. Efficient portability is defined as the
ability to move user code between different architectures without modifi-
cation, yet retain run-time efficiency on both machines. A review of what
allows code to be portable will illuminate what might be necessary for
efficient portability.

FORTRAN is portable. It contains certain fundamental data types such
as integers whose internal data structure is hidden from the user by the
compiler. For example, the user need not know how negative numbers are
represented in the machine. Operations on integers such as +, —. *, / are
guaranteed to work, at least within certain machine-dependent ranges. Thus,
for a FORTRAN program that performs integer arithmetic running on a
16-bit word, one’s complement machine should work without modification
on a 32-bit word, two's complement machine. even if the underlying machine
languages are very different. The reason for this is that the data layout for
integers has been encapsulated by the FORTRAN compiler.

C++ allows the user to define an object that is essentially a fundamental
data type. At this point we emphasize that a major goal of a C++ envi-
ronment is to allow user code to be portable and efficient across different
architectures. For example, on a Cray a matrix might best be stored as a
series of row vectors (or column vectors in FORTRAN) with operations set
up so as to increment within the vector on the innermost loop; a matrix
addition in FORTRAN for a Cray that incremented across columns instead
of across rows within a column on its innermost loop would have no vec-
torization gain. On a Connection Machine (CM), however, it would be
better to store a matrix in block form (see Fig. 4). Matrix addition is most
efficiently implemented in block form as well, with each processor perfor-
ming operations on fixed-size submatrices.
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L r Machin Data Layout: MPP
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Each Pj is a processor with
A2 :

data storage;
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Pij holds Ajj; 1<igk; 1<j<h
FIG. 4. Possible Data Layout of n x m Matrix on Two Architectures
SimPLE EXAMPLE

The best data layout for a matrix is often critically dependent on the
underlying architecture. As in Fig. 4, it may well be best to view a matrix
as a sequence of column vectors on a vector machine such as the Cray, and
to view it as a block matrix on a massively parallel architecture. The most
efficient algorithm for various matrix operations will depend on the under-
lying data layout. Code designed for serial architectures is often horribly
inefficient on massively parallel processors (MPP). Even porting between
MPP machines may require fine-tuning such things as the optimal size of
subblocks.

Furthermore, there are radically different processor topologies possible
for different MPP architectures, and it may be wise to modify some under-
lying data structures when porting code between two different kinds of MPP
machines. For example, in a Hypercube architecture, there are 27 processors
where each processor has n neighbors directly connected to it. This archi-
tecture favors algorithms that minimize passing data between processors
that are not “neighbors.” On a (fictional) MPP transputer where all pro-
cessors lie the same distance from each other, very different data layouts
and algorithms would be desired for efficiency purposes. ,

In FORTRAN, all routines that use a matrix “‘know” its data layout.
Porting a FORTRAN user program from a Cray to an MPP machine will,
at the very least, require altering all subroutine calls (including input/output
{I/O]) and probably substantial rewrites beyond this. In C++, since the
view of the data is encapsulated within the libraries, these rewrites are
unnecessary. In other words, the libraries must be rewritten for each ma-
chine (as with FORTRAN), but C++ user code need not be modified at
all to run efficiently, using the strengths and avoiding the weaknesses of
different architectures. The goal is a system whereby lower-level algorithms
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C Code fragment to read in A & B, set C=A+B, output C, optimized for Cray
C Inputs a matrix, stores it in column major form

CALL CRAYIN(A N M)

CALL CRAYIN(B,N.M)
C Adds A & B, storesresultin C

CALL CRAYAD(A B,CN,M)
C Expors C stored in column major form

CALL CRAOUT(CN.M)

FORTRAN USER CODE (MPP)

C Code fragment to read in A & B, set C=A+B, output C, optimized for a
C particular MPP C machine
C
C Inputs a matrix, stores it in submatrix form
C each submatrix is NSUB by MSUB (this might be hardwired in MPPIN)
CALL MPPIN(A,N,M,NSUB,MSUB)
CALL MPPIN(B,N,M,NSUB ,MSUB)
C Adds A & B, stores resultin C
CALL MPPADD(A,B,C,N,M,NSUB,MSUB)
C Exports C stored in submatrix form
CALL MPPOUT(C,N,M,NSUB,MSUB)

C++ USER CODE

(* C++ code fragment optimized for Cray or MPP *)
cin>>A>>B; //input A & B
C=A+B;
cout << C; //output C

FIG. 5. User Code Fragments for Matrix Addition

that are tied to the architecture can be written once, and higher-level code
can be written by users who need not know or care about such underlying
efficiency tradeoffs. Fig. 5 shows user code fragments for adding two mat-
rices.

A properly constructed C++ library is not subject to some of the coding
problems that could cause grief in FORTRAN. The C++ code fragment
in Fig. 5 assumes A, B, and C all have known dimensions. The FORTRAN
fragments in Fig. 5 also assume known dimensionality, but FORTRAN
doesn’t have a well-accepted method of giving this information to all
potential subroutines at one time. If the user accidentally types CRAYIN(A,
M. N), and this is buried in a much larger code, it may take forever to find;
whereas, if the C++ user accidentally gives the wrong dimensions for A,
the library routine “+ 7 can note the discrepancy in row and column size
of its operands and generate a run-time error of the form:

“attempt to add 2 matrices of incompatible row sizes in line xx of file yy.”

ExampLE User Cope WRITTEN IN C+ + FOR MATRIX OPERATIONS

A useful feature of OOP is its potential for developing a library where
the user code specifies certain properties of an object and trusts the library
to handle ail of the details associated with this information. Some properties
need not be described even by the user code. For example, matrix sparsity
can be tested by the matrix input operator although intermediate knowledge
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that the library can not infer from properties and operations may need to

be supplied by the user.
Fig. 6 offers an example of what a user would do to perform a few simple

vector and matrix operations (with several comments to highlight the flavor
of basic operations in C+ +). The library file ““vector.h™ would include the
actual vector and matrix class structures as well as associated operations.
Fig. 7 shows sample input and output for the code in Fig. 6.

One benefit of C+ + 1s operator overloading. If the user wants to multiply
two matrices A and B, the user simply enters A*B; the creator of the matrix
library defines the (*) operation. This is good for the user, because it is
easy to understand what is going on in a program, and it is useful to the
library implementer because everything is set up in a convenient modular
form. Further, the library can determine which (*) operation is needed,
without any attempts at efficiency in the user code. For example, in C++
if A and B are both sparse the library can automatically run a more efficient
routine than if A and B are dense. The technique of allowing the library to
select a specific algorithm for implementing a particular function could

/* vector.C Lewis R. Wagner
*  simple vector and matrix manipulations in C++

*/
#include "vector.h"

Nmp&bo
int i;
constint VEC_SIZE = 5;
vector a(VEC_SIZE),b(VEC_SIZE),c(VEC_SIZE),d;
mattix A(VEC_SIZE,VEC_SIZE) B(VEC_SIZE,VEC_SIZE);

d.set_size(VEC_SIZE);  // demonstrates setting size of a vector dynamically
cin >>a; //read in a vector
cin >> A; //read in a matrix

b=a; /f vector = vector, copies the CONTENTS of ainto b
c=a+b; // vector = vector + vector

i=a*b; // vector = vector * vector

d=i*b; // vector = integer * vector

cout << "a*(b=a): " <<i<<"™\n"; //print out an integer

cout<<” a:"<<a // print out a vector

cout<<" b=a:" <<b;

cout<<" a+h: " <<

cout << "(a*b)*b: " << g;

cout << "A:\n" << A; // print out a matrix
B=i*A; // matix = integer * matrix

cout << "i*A\n" << B;

cout << "a*A:\n" << a*A; /{ vector * matrix

matrix C(VEC_SIZE,1),D(1,VEC_SIZE);
C.make_column(0,2); // assign vector a to Oth column of matrix C
D0l =a; // assign vector a to the Oth row of matrix D

A = A*C*D;
cout << "C:\n" << C;

cout << "D:\n" << D;
cout << "A = A*C*D\n" << A;

FIG. 6. Example User Code—vector C
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vector.dat - the input file
12345

Results of executing vector.C on vector.dat

0 55 110 165 220
55 110 165 220 275
110 165 220 275 330
165 220 275 330 385
220 275 330 385 440

55 110 165 220 275
70 140 210 280 350
85 170 255 340 425
100 200 300 400 500

a*(b=a): 55 | a*A:
a: 1 2 3 4 5 1 40 55 70 8 100
b=a: 1 2 3 4 5 | C:
a+b: 2 4 6 8 10 | 1
(a*b)*b: 55 110 165 220 275 | 2
A | 3
0 1 2 3 4 | 4
1 2 3 4 5 | 5
2 3 4 5 6 | D:
3 4 5 6 17 ! 1 2 3 4 5
4 5 6 7 8 | A = A*C*D:
i*A: | 40 80 120 160 200
|
|
|
|
]

FIG. 7. Input and Output Files for Example User Code

produce significant efficiency gains if the matrix object “knows™ more elab-
orate properties about itself. By contrast, in FORTRAN the user code must
specify which matrix algorithm to employ.

CompaTiBILITY BETWEEN C++ AND FORTRAN

The ability to incorporate preexisting FORTRAN routines into C++
libraries is highly desirable. FORTRAN libraries can be incorporated in the
low levels of a C++ library (Floyd 1989), but should not just be thrown in
randomly since much of the internal representation of the data is hidden
(one of the major advantages of object-oriented programming). For ex-
ample, the writer of the library could simply choose to call a FORTRAN
routine for sparse matrix multiply, provided the internal data structures are
set up accordingly, while the user would code ““A*B" and rely on the library,
not knowing that the library was not all written in C++ . The communication
problems here are roughly the same as linking a FORTRAN subroutine in
C.

Ease oF Uske VERSUS EFFICIENCY

As previously noted, OOP enables one to design scientific codes in a
more modular fashion than is practical to do with FORTRAN. It also allows
for much more flexibility in the type of data structures used. A significant
and compelling reason to use OOP, however, is the natural decomposition
of the problem for parallelization. One goal is the development of a class
structure that makes maximum use of inheritance for shared memory. For
example, in a finite element code an element might reside entirely on a
single processor of some parallel framework.

The most immediate gain evident in the use of OOP languages is in code
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production and modification. No OOP language can currently outperform
FORTRAN on the Cray. for example, but this is largely due to the amount
of work already invested in vectorizing compilers for FORTRAN. To our
knowledge, efforts to vectorize C++ are in their infancy.

More advanced tools such as object/class browsers and graphical debug-
gers are largely unavailable on supercomputers. Even if these tools were
available, it makes more sense in terms of resource utilization to develop
code on a workstation. Indeed, one of the primary benefits of OOP for
large-scale scientific applications is that user code can be developed without
worrying about the underlying data representation; the internal data rep-
resentation is strongly tied to the underlying computer architecture.

GraPHICAL INTERFACES

The greatest success for OOP techniques has been in the field of graphics
(Segal 1990). What might be more useful than having a better programming
language, like C++, would be a comprehensive environment in which to
program scientific codes. A graphical user interface (GUI) could handle
such diverse tasks as managing inventories of objects and object hierarchies
available, as well as the pre- and postprocessing of data.

Traditionally, the sequence of using an existing scientific code is as fol-
lows: data is preprocessed, a scientific code is run on this preprocessed data,
and the results are postprocessed to be urderstandable by a human. The
drawbacks of this sequence are that the writer of the user code must under-
stand the form of the data sent from the preprocessor and to be sent to the
postprocessor, as well as lengthened turnaround time between complete
runs.

An object could have graphical input and viewing methods attached to it
as easily as mathematical methods. This has advantages in terms of library
development, modification, and use. A library developer can attach graph-
ical methods to an object without disturbing any other methods and in a
manner such that operation is conceptually independent. This allows for
incremental development of the system as well as straightforward modifi-
cation. The user need only know the name of the methods to call. At a
higher level, even this amount of code could be automatically generated
from a menu. This system could also allow for rapid turn around time
between experiments.

SUMMARY

This paper provides an introduction to COP techniques and design, as
well as a survey of the emerging literature in applying these technigues to
the development of scientific codes. OOP allows for the design of more
modular scientific codes than is practical to do with FORTRAN. Moreover,
OOP also provides for the natural decomposition of a problem for imple-
mentation on massively parallel processor architectures.

Object-oriented programming techniques are mature enough to tackle
serious scientific codes with a fair degree of efficiency compared with FOR-
TRAN on serial machines. OOP techniques are particularly well suited to
vector architectures as well as parallel architectures because of the paral-
lelism inherent in an OOP viewpoint. We suggest that the appropriate
segregation for the design of scientific codes is between library code and
user code. OOP languages allow a great deal of data structure information
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to be encapsulated, allowing for a much cleaner library/user distinction than
is available in FORTRAN. Further, OOP techniques may be employed to
realize the ideal of efficient portability of user code across widely different
architectures.

Of the available OOP languages, C++ has some unique traits for use in
scientific code development. An overriding design philosophy in the evo-
lution of C+ + has been “‘you don’t pay an execution time price for a feature
you don’t use.” This gives C++ a distinct edge in run-time efficiency over
other leading OOP languages that don’t share this design philosophy. In
Ross et al. (1992), some simple scientific codes developed with OOP tech-
niques and implemented in C++ are critically examined and the desirable
and undesirable aspects of C++ as an OOP language are discussed.
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